【關鍵詞】變徑整流器
【論文摘要】傳統(tǒng)的流體整流器經長期的研究與實踐已趨于成熟,它一般采用阻隔體分隔流道來調整管道內的速度分布,以達到整流的目的;這一類整流器主要用于實驗室和流量標定系統(tǒng)。但這種方法易引起污物堵塞和增加阻力損失,所以在工業(yè)管道上很少采用。
一、概述
傳統(tǒng)的流體整流器經長期的研究與實踐已趨于成熟,它一般采用阻隔體分隔流道來調整管道內的速度分布,以達到整流的目的;這一類整流器主要用于實驗室和流量標定系統(tǒng)。但這種方法易引起污物堵塞和增加阻力損失,所以在工業(yè)管道上很少采用。
渦街流量計由于其獨特的性能,一直受到人們重視,并己到了廣泛的應用,但仍有兩個方面的問題困擾著人們,一是由于儀表上游管道阻流件的干擾,流場發(fā)生畸變,影響旋渦正常撥離。為了克服流場擾動,儀表前需要配裝較長直管道(一般為15~40倍的工藝管內徑的長度),而在實際現場是很難滿足的。二是,渦街流量計主要特點之一是量程寬,一般在10:1左右,應該說這樣寬的測量范圍應屬比較優(yōu)良的性能,但在實際工業(yè)應用中,最大流量遠低于儀表的上限值,最小流量又往往會低于儀表的下限值,一些儀表經常工作在下限流量附近,造成儀表的計量準確度下降,這時信號較弱,儀表的抗干擾能力也下降。為了測量小流量,人們往往采用內腔形狀為園臺的傳統(tǒng)變徑管,經過縮徑提高測量處的流速。使渦街流量計工作在正常流速范圍內,但這種變徑方式,結構尺寸大(一般長度為工藝管內徑的3~5倍),同時,由于流體流經變徑管,在變徑處產生大量旋轉流團,增大局部阻力損失,也使流場發(fā)生畸變。所以必須在變徑管與儀表之間加裝大于15倍工藝管內徑長度的直管道進行整流,且增加了沿程阻力損失(如圖1所示),這種方法增加施工成本,也給加工、安裝帶來不便。
[align=center]

(圖1) [/align]
縱端面采用特殊形線的變徑整流器(己申報國家專利),具有整流,提高流速及改變流速分布的多重作用,其結構尺寸小,長度僅為工藝管內徑的1/3,可以直接卡裝在儀表的兩端,不僅不需要另外附加直管道,而且可以降低儀表對上游直管道的要求。實驗表明:儀表上游阻力件為一個平面內的兩個90°彎頭 在一般情況下,渦街流量計上游側應加裝大于20倍管道內徑長度的直管道,而渦街流量計加裝了變徑整流器大大降低了對上游測直管道長度的要求,其阻力遠遠小于傳統(tǒng)的變徑管。更主要的是,可使下限流速降為原來的1/3,量程比提高到15:1以上。 ’
二、原理及分析
首先應該指出,傳統(tǒng)的變徑管可以經過縮徑,并配以較小口徑的流量計來達到測量小流量的目的,但是這種方法不可能擴大儀表的量程比,因為它并末改變管道的流速分布狀態(tài)。我們知道,渦街流量計的理論及推導是基于在無窮大的均勻流場中得到的,而在實際封閉圓管中,卻是非均勻流場,橫斷面的流速分布是一回轉拋物面,雖然選擇合理的柱型,使柱體兩側弓形面的流速分布均勻,但實際上,工藝管道上回轉拋物面的流速分布的影響是客觀存在的。實驗表明在比較大的流量時,這個影響較小,或說這個影響在允許的范圍內;但隨著流量的下降,這個影響越來越大,從大量標定數據看,儀表常數總是隨著流量的減小而增大。這說明取樣點的流速與平均流速差異越來越大。
采用了變徑整流器后(見圖2),由于縮經斷面的流速在逐漸增大,在斷面上各點流速的增加是不一樣的,靠近中心流速增加小,而靠近喉徑邊沿處流速增加大。
設整流器進口處壓力為P1,平均流速為V1,某點上的速度不均勻度為U1,出口處壓力為P2,平均流速為V2,通過進口處某點同一流線,在出口處的速度不均勻度為U2,沿該流線,由伯努利方程得:
[align=center]

[/align]
由式(6)可見,收縮比對出口處流速均勻度的影響,即對于一定的進口速度不均勻度,
出口處的速度不均勻度將縮小n2倍。因此出口處流速趨于均勻,更接近渦街流量計理論的均勻流場的條件,不僅使漩渦趨于穩(wěn)定,且提高了儀表的測量范圍。另外,這種變徑整流器,在流體動能的轉換過程中有效的抑制了干擾。
三、實驗驗正
例1:一臺口徑為40mm的渦街流量計安裝在φ40的工藝管道上,標定滿足精度1%的量程比為8:1,當安裝在φ50工藝管道上,并在儀表兩側安裝變徑整流器,在15:1的范圍內精度為1.0%。
例2:二臺口徑為50mm和40mm渦街流量計配裝整流器后,分別安裝在口徑為80mm工藝管道上,進行水標定。實驗數據見表1。