技術(shù)頻道

娓娓工業(yè)
您現(xiàn)在的位置: 中國傳動(dòng)網(wǎng) > 技術(shù)頻道 > 技術(shù)百科 > 什么叫通用人工智能

什么叫通用人工智能

時(shí)間:2024-03-13 16:44:00來源:21ic電子網(wǎng)

導(dǎo)語:?在當(dāng)今科技快速發(fā)展的時(shí)代,人工智能(Artificial Intelligence,簡稱AI)已經(jīng)成為人們熱議的話題之一。其中,通用人工智能(AGI)更是備受關(guān)注。

  一、什么是通用人工智能(AGI)?

  通用人工智能(Artificial General Intelligence,簡稱AGI)是指擁有與人類相當(dāng)甚至超過人類智能的人工智能類型。通用人工智能不僅能像人類一樣進(jìn)行感知、理解、學(xué)習(xí)和推理等基礎(chǔ)思維能力,還能在不同領(lǐng)域靈活應(yīng)用、快速學(xué)習(xí)和創(chuàng)造性思考。

  1 AGI發(fā)展綜述

  1.1 AGI的概念

  AGI通用人工智能,也稱強(qiáng)人工智能(Strong AI),指的是具備與人類同等甚至超越人類的智能,能表現(xiàn)出正常人類所具有的所有智能行為。

  ChatGPT是大模型發(fā)展量變到質(zhì)變的結(jié)果,ChatGPT具備了一定的AGI能力。隨著ChatGPT的成功,AGI已經(jīng)成為全球競爭的焦點(diǎn)。

  與基于大模型發(fā)展的AGI對(duì)應(yīng)的,傳統(tǒng)的基于中小模型的人工智能,也可以稱為弱人工智能。它聚焦某個(gè)相對(duì)具體的業(yè)務(wù)方面,采用相對(duì)中小參數(shù)規(guī)模的模型,中小規(guī)模的數(shù)據(jù)集,然后實(shí)現(xiàn)相對(duì)確定、相對(duì)簡單的人工智能場景應(yīng)用。

  1.2 AGI特征之一:涌現(xiàn)

  “涌現(xiàn)”,并不是一個(gè)新概念。凱文·凱利在他的《失控》中就提到了“涌現(xiàn)”,這里的“涌現(xiàn)”,指的是眾多個(gè)體的集合會(huì)涌現(xiàn)出超越個(gè)體特征的某些更高級(jí)的特征。

  在大模型領(lǐng)域,“涌現(xiàn)”指的是,當(dāng)模型參數(shù)突破某個(gè)規(guī)模時(shí),性能顯著提升,并且表現(xiàn)出讓人驚艷的、意想不到的能力,比如語言理解能力、生成能力、邏輯推理能力等等。

  對(duì)外行(比如作者自己)來說,涌現(xiàn)能力,可以簡單的用“量變引起質(zhì)變”來解釋:隨著模型參數(shù)的不斷增加,終于突破了某個(gè)臨界值,從而引起了質(zhì)的變化,讓大模型產(chǎn)生了許多更加強(qiáng)大的、新的能力。

  如果想詳細(xì)了解大模型“涌現(xiàn)”能力的詳細(xì)分析,可以參閱谷歌的論文《Emergent Abilities of Large Language Models》。

  當(dāng)然,目前,大模型發(fā)展還是非常新的領(lǐng)域,對(duì)“涌現(xiàn)”能力的看法,也有不同的聲音。例如斯坦福大學(xué)的研究者對(duì)大語言模型“涌現(xiàn)”能力的說法提出了質(zhì)疑,認(rèn)為其是人為選擇度量方式的結(jié)果。詳見論文《Are Emergent Abilities of Large Language Models a Mirage?》。

  1.3 AGI特征之二:多模態(tài)

  每一種信息的來源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺、聽覺、視覺等;信息的媒介有文字、圖像、語音、視頻等;各種類型的傳感器,如攝像頭、雷達(dá)、激光雷達(dá)等。多模態(tài),顧名思義,即從多個(gè)模態(tài)表達(dá)或感知事物。而多模態(tài)機(jī)器學(xué)習(xí),指的是從多種模態(tài)的數(shù)據(jù)中學(xué)習(xí)并且提升自身的算法。

  傳統(tǒng)的中小規(guī)模AI模型,基本都是單模態(tài)的。比如專門研究語言識(shí)別、視頻分析、圖形識(shí)別以及文本分析等單個(gè)模態(tài)的算法模型。

  基于Transformer的chatGPT出現(xiàn)之后,之后的AI大模型基本上都逐漸實(shí)現(xiàn)了對(duì)多模態(tài)的支持:

  首先,可以通過文本、圖像、語音、視頻等多模態(tài)的數(shù)據(jù)學(xué)習(xí);

  并且,基于其中一個(gè)模態(tài)學(xué)習(xí)到的能力,可以應(yīng)用在另一個(gè)模態(tài)的推理;

  此外,不同模態(tài)數(shù)據(jù)學(xué)習(xí)到的能力還會(huì)融合,形成一些超出單個(gè)模態(tài)學(xué)習(xí)能力的新的能力。

  多模態(tài)的劃分是我們?nèi)藶檫M(jìn)行劃分的,多種模態(tài)的數(shù)據(jù)里包含的信息,都可以被AGI統(tǒng)一理解,并轉(zhuǎn)換成模型的能力。在中小模型中,我們?nèi)藶楦盍蚜撕芏嘈畔?,從而限制的AI算法的智能能力(此外,模型的參數(shù)規(guī)模和模型架構(gòu),也對(duì)智能能力有很大影響)。

  1.4 AGI特征之三:通用性

  從2012年深度學(xué)習(xí)走入我們的視野,用于各類特定應(yīng)用場景的AI模型就如雨后春筍般的出現(xiàn)。比如車牌識(shí)別、人臉識(shí)別、語音識(shí)別等等,也包括一些綜合性的場景,比如自動(dòng)駕駛、元宇宙場景等。每個(gè)場景都有不同的模型,并且同一個(gè)場景,還有很多公司開發(fā)的各種算法和架構(gòu)各異的模型。可以說,這一時(shí)期的AI模型,是極度碎片化的。

  而從GPT開始,讓大家看到了通用AI的曙光。最理想的AI模型:可以輸入任何形式、任何場景的訓(xùn)練數(shù)據(jù),可以學(xué)習(xí)到幾乎“所有”的能力,可以做任何需要做的決策。當(dāng)然,最關(guān)鍵的,基于大模型的AGI的智能能力遠(yuǎn)高于傳統(tǒng)的用于特定場合的AI中小模型。

  完全通用的AI出現(xiàn)以后,一方面我們可以推而廣之,實(shí)現(xiàn)AGI+各種場景;另一方面,由于算法逐漸確定,也給了AI加速持續(xù)優(yōu)化的空間,從而可以持續(xù)不斷的優(yōu)化AI算力。算力持續(xù)提升,反過來又會(huì)推動(dòng)模型向更大規(guī)模參數(shù)演進(jìn)升級(jí)。

  2 專用和通用的關(guān)系

  牧本波動(dòng)(Makimoto's Wave)是一個(gè)與摩爾定律類似的電子行業(yè)發(fā)展規(guī)律,它認(rèn)為集成電路有規(guī)律的在“通用”和“專用”之間變化,循環(huán)周期大約為10年。也因此,芯片行業(yè)的很多人認(rèn)為,“通用”和“專用”是對(duì)等的,是一個(gè)天平的兩邊。設(shè)計(jì)研發(fā)的產(chǎn)品,偏向通用或偏向?qū)S茫腔诳蛻魣鼍靶枨?,?duì)產(chǎn)品實(shí)現(xiàn)的權(quán)衡。

  但從AGI的發(fā)展來看,基于大模型的AGI和傳統(tǒng)的基于中小模型的專用人工智能相比,并不是對(duì)等的兩端左右權(quán)衡的問題,而是從低級(jí)智能升級(jí)到高級(jí)智能的問題。我們再用這個(gè)觀點(diǎn)重新來審視一下計(jì)算芯片的發(fā)展歷史:

  專用集成電路ASIC是貫穿集成電路發(fā)展的一直存在的一種芯片架構(gòu)形態(tài);

  在CPU出現(xiàn)之前,幾乎所有的芯片都是ASIC;但在CPU出現(xiàn)之后,CPU迅速的取得了芯片的主導(dǎo)地位;CPU的ISA包含的是加減乘除等最基本的指令,也因此CPU是完全通用的處理器。

  GPU最開始的定位是專用的圖形處理器;自從GPU改造成了定位并行計(jì)算平臺(tái)的GP-GPU之后,輔以幫助用戶開發(fā)的CUDA的加持,從而成就了GPU在異構(gòu)時(shí)代的王者地位。

  隨著系統(tǒng)復(fù)雜度的增加,不同客戶系統(tǒng)的差異性和客戶系統(tǒng)的快速迭代,ASIC架構(gòu)的芯片,越來越不適合。行業(yè)逐漸興起了DSA的浪潮,DSA可以理解成ASIC向通用可編程能力的一個(gè)回調(diào),DSA是具有一定編程能力的ASIC。ASIC面向具體場景和固化的業(yè)務(wù)邏輯,而DSA則面向一個(gè)領(lǐng)域的多種場景,其業(yè)務(wù)邏輯部分可編程。即便如此,在AI這種對(duì)性能極度敏感的場景,相比GPU,AI-DSA都不夠成功,本質(zhì)原因就在于AI場景快速變化,但AI-DSA芯片迭代周期過長。

  從長期發(fā)展的角度看,專用芯片的發(fā)展,是在給通用芯片探路。通用芯片,會(huì)從各類專用計(jì)算中析取出更加本質(zhì)的足夠通用的計(jì)算指令或事務(wù),然后把之融合到通用芯片的設(shè)計(jì)中去。比如:

  CPU完全通用,但性能較弱,所以就通過向量和張量等協(xié)處理器的方式,實(shí)現(xiàn)硬件加速和性能提升。

  CPU的加速能力有限,于是出現(xiàn)了GPU。GPU是通用并行加速平臺(tái)。GPU仍然不是性能最高的加速方式,也因此,出現(xiàn)了Tensor Core加速的方式。

  Tensor Core的方式,仍然沒有完全釋放計(jì)算的性能。于是,完全獨(dú)立的DSA處理器出現(xiàn)。

標(biāo)簽: 人工智能

點(diǎn)贊

分享到:

上一篇:安裝工業(yè)機(jī)器人共分幾步?

下一篇:開關(guān)電源維修方法步驟

中國傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:凡本網(wǎng)注明[來源:中國傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國傳動(dòng)網(wǎng)(www.surachana.com)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來源“中國傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

網(wǎng)站簡介|會(huì)員服務(wù)|聯(lián)系方式|幫助信息|版權(quán)信息|網(wǎng)站地圖|友情鏈接|法律支持|意見反饋|sitemap

傳動(dòng)網(wǎng)-工業(yè)自動(dòng)化與智能制造的全媒體“互聯(lián)網(wǎng)+”創(chuàng)新服務(wù)平臺(tái)

網(wǎng)站客服服務(wù)咨詢采購咨詢媒體合作

Chuandong.com Copyright ?2005 - 2025 ,All Rights Reserved 深圳市奧美大唐廣告有限公司 版權(quán)所有
粵ICP備 14004826號(hào) | 營業(yè)執(zhí)照證書 | 不良信息舉報(bào)中心 | 粵公網(wǎng)安備 44030402000946號(hào)