技術(shù)頻道

娓娓工業(yè)
您現(xiàn)在的位置: 中國傳動網(wǎng) > 技術(shù)頻道 > 技術(shù)百科 > 機(jī)器學(xué)習(xí)有哪幾種類型的算法

機(jī)器學(xué)習(xí)有哪幾種類型的算法

時間:2024-04-10 17:52:52來源:21ic電子網(wǎng)

導(dǎo)語:?神經(jīng)網(wǎng)絡(luò)是一種運(yùn)算模型,由大量的節(jié)點(diǎn)(或稱神經(jīng)元)之間相互聯(lián)接構(gòu)成。

  1.人工神經(jīng)網(wǎng)絡(luò)

  神經(jīng)網(wǎng)絡(luò)是一種運(yùn)算模型,由大量的節(jié)點(diǎn)(或稱神經(jīng)元)之間相互聯(lián)接構(gòu)成。每個節(jié)點(diǎn)代表一種特定的輸出函數(shù),稱為激勵函數(shù)(activation function)。每兩個節(jié)點(diǎn)間的連接都代表一個對于通過該連接信號的加權(quán)值,稱之為權(quán)重,這相當(dāng)于人工神經(jīng)網(wǎng)絡(luò)的記憶。網(wǎng)絡(luò)的輸出則依網(wǎng)絡(luò)的連接方式,權(quán)重值和激勵函數(shù)的不同而不同。而網(wǎng)絡(luò)自身通常都是對自然界某種算法或者函數(shù)的逼近,也可能是對一種邏輯策略的表達(dá)。

  人工神經(jīng)網(wǎng)絡(luò)(ANN)以大腦處理機(jī)制作為基礎(chǔ),開發(fā)用于建立復(fù)雜模式和預(yù)測問題的算法。該類型算法在語音、語義、視覺、各類游戲等任務(wù)中表現(xiàn)極好,但需要大量數(shù)據(jù)進(jìn)行訓(xùn)練,且訓(xùn)練要求很高的硬件配置。

  ANN在圖像和字符識別中起著重要的作用,手寫字符識別在欺詐檢測甚至國家安全評估中有很多應(yīng)用。ANN 的研究為深層神經(jīng)網(wǎng)絡(luò)鋪平了道路,是「深度學(xué)習(xí)」的基礎(chǔ),現(xiàn)已在計(jì)算機(jī)視覺、語音識別、自然語言處理等方向開創(chuàng)了一系列令人激動的創(chuàng)新。

  2.決策樹

  在機(jī)器學(xué)習(xí)中,決策樹是一個預(yù)測模型,他代表的是對象屬性與對象值之間的一種映射關(guān)系。其采用一種樹形結(jié)構(gòu),其中每個內(nèi)部節(jié)點(diǎn)表示一個屬性上的測試,每個分支代表一個測試輸出,每個葉節(jié)點(diǎn)代表一種類別。

  決策樹算法屬于非參數(shù)型,較為容易解釋,但其趨向過擬合;可能陷入局部最小值中;無法在線學(xué)習(xí)。決策樹的生成主要分為兩步:1.節(jié)點(diǎn)的分裂:當(dāng)一個節(jié)點(diǎn)所代表的屬性無法給出判斷時,則選擇將該節(jié)點(diǎn)分成2個子節(jié)點(diǎn) 2. 閾值的確定:選擇適當(dāng)?shù)拈撝凳沟梅诸愬e誤率最小。

  分類樹(決策樹)是一種十分常用的分類方法。它是一種監(jiān)督學(xué)習(xí),所謂監(jiān)督學(xué)習(xí)就是給定一堆樣本,每個樣本都有一組屬性和一個類別,這些類別是事先確定的,那么通過學(xué)習(xí)得到一個分類器,這個分類器能夠?qū)π鲁霈F(xiàn)的對象給出正確的分類。這樣的機(jī)器學(xué)習(xí)就被稱之為監(jiān)督學(xué)習(xí)。

  3.集成算法

  簡單算法一般復(fù)雜度低、速度快、易展示結(jié)果,其中的模型可以單獨(dú)進(jìn)行訓(xùn)練,并且它們的預(yù)測能以某種方式結(jié)合起來去做出一個總體預(yù)測。每種算法好像一種專家,集成就是把簡單的算法組織起來,即多個專家共同決定結(jié)果。

  集成算法比使用單個模型預(yù)測出來的結(jié)果要精確的多,但需要進(jìn)行大量的維護(hù)工作。

  AdaBoost的實(shí)現(xiàn)是一個漸進(jìn)的過程,從一個最基礎(chǔ)的分類器開始,每次尋找一個最能解決當(dāng)前錯誤樣本的分類器。好處是自帶了特征選擇,只使用在訓(xùn)練集中發(fā)現(xiàn)有效的特征,這樣就降低了分類時需要計(jì)算的特征數(shù)量,也在一定程度上解決了高維數(shù)據(jù)難以理解的問題。

  4.回歸算法

  回歸分析是在一系列的已知自變量與因變量之間的相關(guān)關(guān)系的基礎(chǔ)上,建立變量之間的回歸方程,把回歸方程作為算法模型,通過其來實(shí)現(xiàn)對新自變量得出因變量的關(guān)系。因此回歸分析是實(shí)用的預(yù)測模型或分類模型。

  在線性回歸中,數(shù)據(jù)使用線性預(yù)測函數(shù)來建模,并且未知的模型參數(shù)也是通過數(shù)據(jù)來估計(jì)。這些模型被叫做線性模型。最常用的線性回歸建模是給定X值的y的條件均值是X的仿射函數(shù)。不太一般的情況,線性回歸模型可以是一個中位數(shù)或一些其他的給定X的條件下y的條件分布的分位數(shù)作為X的線性函數(shù)表示。像所有形式的回歸分析一樣,線性回歸也把焦點(diǎn)放在給定X值的y的條件概率分布,而不是X和y的聯(lián)合概率分布(多元分析領(lǐng)域)。

  線性回歸是回歸分析中第一種經(jīng)過嚴(yán)格研究并在實(shí)際應(yīng)用中廣泛使用的類型。這是因?yàn)榫€性依賴于其未知參數(shù)的模型比非線性依賴于其未知參數(shù)的模型更容易擬合,而且產(chǎn)生的估計(jì)的統(tǒng)計(jì)特性也更容易確定。

  線性回歸模型經(jīng)常用最小二乘逼近來擬合,但他們也可能用別的方法來擬合,比如用最小化“擬合缺陷”在一些其他規(guī)范里(比如最小絕對誤差回歸),或者在橋回歸中最小化最小二乘損失函數(shù)的懲罰.相反,最小二乘逼近可以用來擬合那些非線性的模型.因此,盡管“最小二乘法”和“線性模型”是緊密相連的,但他們是不能劃等號的。

  5.貝葉斯算法

  樸素貝葉斯分類是一種十分簡單的分類算法:對于給出的待分類項(xiàng),求解在此項(xiàng)出現(xiàn)的條件下各個類別出現(xiàn)的概率,哪個最大,就認(rèn)為此待分類項(xiàng)屬于哪個類別。

  樸素貝葉斯分類分為三個階段,1.根據(jù)具體情況確定特征屬性,并對每個特征屬性進(jìn)行適當(dāng)劃分,形成訓(xùn)練樣本集合2.計(jì)算每個類別在訓(xùn)練樣本中的出現(xiàn)頻率及每個特征屬性劃分對每個類別的條件概率估計(jì)3.使用分類器對待分類項(xiàng)進(jìn)行分類。

  分類是數(shù)據(jù)分析和機(jī)器學(xué)習(xí)領(lǐng)域的一個基本問題。文本分類已廣泛應(yīng)用于網(wǎng)絡(luò)信息過濾、信息檢索和信息推薦等多個方面。數(shù)據(jù)驅(qū)動分類器學(xué)習(xí)一直是近年來的熱點(diǎn),方法很多,比如神經(jīng)網(wǎng)絡(luò)、決策樹、支持向量機(jī)、樸素貝葉斯等。相對于其他精心設(shè)計(jì)的更復(fù)雜的分類算法,樸素貝葉斯分類算法是學(xué)習(xí)效率和分類效果較好的分類器之一。直觀的文本分類算法,也是最簡單的貝葉斯分類器,具有很好的可解釋性,樸素貝葉斯算法特點(diǎn)是假設(shè)所有特征的出現(xiàn)相互獨(dú)立互不影響,每一特征同等重要。但事實(shí)上這個假設(shè)在現(xiàn)實(shí)世界中并不成立:首先,相鄰的兩個詞之間的必然聯(lián)系,不能獨(dú)立;其次,對一篇文章來說,其中的某一些代表詞就確定它的主題,不需要通讀整篇文章、查看所有詞。所以需要采用合適的方法進(jìn)行特征選擇,這樣樸素貝葉斯分類器才能達(dá)到更高的分類效率。


標(biāo)簽: 機(jī)器人

點(diǎn)贊

分享到:

上一篇:新型固態(tài)電池充滿電僅需幾分...

下一篇:高頻變壓器原理

中國傳動網(wǎng)版權(quán)與免責(zé)聲明:凡本網(wǎng)注明[來源:中國傳動網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國傳動網(wǎng)(www.surachana.com)獨(dú)家所有。如需轉(zhuǎn)載請與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個人轉(zhuǎn)載使用時須注明來源“中國傳動網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請保留稿件來源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

網(wǎng)站簡介|會員服務(wù)|聯(lián)系方式|幫助信息|版權(quán)信息|網(wǎng)站地圖|友情鏈接|法律支持|意見反饋|sitemap

傳動網(wǎng)-工業(yè)自動化與智能制造的全媒體“互聯(lián)網(wǎng)+”創(chuàng)新服務(wù)平臺

網(wǎng)站客服服務(wù)咨詢采購咨詢媒體合作

Chuandong.com Copyright ?2005 - 2025 ,All Rights Reserved 深圳市奧美大唐廣告有限公司 版權(quán)所有
粵ICP備 14004826號 | 營業(yè)執(zhí)照證書 | 不良信息舉報(bào)中心 | 粵公網(wǎng)安備 44030402000946號